Cloning and Tissue Distribution of Novel Splice Variants of the Rat GABA_B Receptor

Shojiro Isomoto,*^{,†} Muneshige Kaibara,* Yasuko Sakurai-Yamashita,* Yuji Nagayama,* Yasuhito Uezono,‡ Katsusuke Yano,† and Kohtaro Taniyama*^{,1}

*Department of Pharmacology and †Third Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan; and ‡Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807-8555, Japan

Received October 8, 1998

We have identified two novel splice variants of the metabotropic γ -aminobutyric acid receptor (GABA_RR1), designated GABA_RR1c and GABA_RR1d, when screening a rat cerebellum cDNA library. GABA_BR1c has an amino acid sequence identical to GABA_RR1b, a member of GABA_RR1 isoforms, and an additional 93-bp insertion that generates an additional 31-amino-acid sequence in the fifth transmembrane region of GABA_BR1b. Thus, GABA_BR1c may have a structural variation in the second extracellular loop and fifth transmembrane region. GABA_RR1d also has an amino acid sequence identical to GABA_RR1b and an additional insertion of 566 bp that generates a divergent amino acid sequence in the carboxylterminal end. Reverse-transcription polymerase chain reaction analysis showed that in various rat tissues GABA_RR1c mRNA was ubiquitously expressed and GABA_BR1d mRNA in forebrain, cerebellum, eye, kidney, and urinary bladder. GABA_RR1 isoforms may function not only in the central nervous system but also in various peripheral tissues. © 1998 Academic Press

 $\it Key\ Words:$ molecular cloning; splice variants; $\it GABA_{\rm B}$ receptor; reverse-transcription polymerase chain reaction.

GABA (γ -aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system and is also present in several peripheral tissues, where it could have a functional role in the regulation of muscle contraction or hormonal secretion. The receptors for GABA are pharmacologically classified into two major subtypes, ionotropic GABA_A and metabotropic GABA_B receptors. The GABA_A receptor is the target of several

centrally active drugs, including barbiturates and benzodiazepines, and responds to the antagonist bicuculline (1). Activation of the GABA_A receptor results in opening of a chloride channel and hyperpolarization of postsynaptic cells. The GABA_B receptor is operationally defined by selective activation by baclofen and the lack of sensitivity towards bicuculline, and functions through G proteins to inhibit adenylyl cyclase activity, stimulate phospholipase A_2 , activate K^+ channels, inactivate voltage-dependent Ca^{2+} channels, and modulate inositol phospholipid hydrolysis (2, 3). Recently, we have suggested that GABA_B receptors activate Kir3.1 and Kir3.2 heterologously expressed in *Xenopus* oocytes with poly(A)⁺ RNA derived from rat cerebellum (4).

The cDNA encoding the GABA_B receptor was recently isolated from a rat brain cDNA library by expression cloning using a high-affinity GABA_B receptor antagonist, [125] CGP64213 (5). This clone, designated GABA_RR1a, encodes a protein of 960 amino acids. Further screening of the cDNA library by low-stringency hybridization using the GABA_BR1a cDNA as a probe revealed a shorter form, designated GABA_RR1b, which encodes an 844-amino-acid protein. The membrane topology of GABA_BR1a and -b is similar to that of G-protein-coupled receptors, such as muscarinic, serotonergic, opioid, somatostatin, and metabotropic glutamate receptors: i.e., seven putative transmembrane regions with the amino (N)- and carboxyl (C)-terminal regions located extracellularly and intracellularly, respectively. The sequences of GABA_BR1a and -b differ at the N-terminus and are otherwise identical, hence they may be formed by alternative splicing of a single rat gene. The availability of cDNAs for GABA_B receptors led us to clone their variants on the basis of homology. We screened a rat cerebellum cDNA library and identified two novel isoforms of the receptor, designated GABA_BR1c and -d. Tissue distributions of their mRNAs were examined using reverse tran-

¹ To whom correspondence should be addressed at Department of Pharmacology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Fax: +81-95-849-7048. E-mail: taniyama@net.nagasaki-u.ac.jp.

scription-polymerase chain reaction (RT-PCR) analysis. The functional expression of these clones in mammalian cells and in *Xenopus* oocytes heterologously expressing Kir3.1 and Kir3.2 was attempted.

EXPERIMENTAL PROCEDURES

Screening of a rat cerebellum cDNA library. A rat cerebellum cDNA library (Clontech, Palo Alto, CA) was screened under conditions of mild stringency, using a $^{32}\text{P-labeled}$ DNA fragment encoding rat GABA_BR1 (nucleotide positions 653–1789 in GABA_BR1b), obtained by RT-PCR from rat cerebellum RNA. Hybridization was conducted in 30% formamide, $5\times$ SSC, $5\times$ Denhardt's solution, 0.1% SDS, $250~\mu\text{g/m}$ denatured salmon sperm DNA, at 37°C for 18 h. Filters were washed with $2\times$ SSC, 0.1% SDS at room temperature for 20 min and then exposed to X-ray film overnight at -80°C with an intensifying screen. Positive clones were subcloned into the pCR2.1 vector (Invitrogen, San Diego, CA) for sequencing. DNA sequencing was performed on both strands using an ABI 377 automated DNA sequencer (Perkin–Elmer, Foster, CA).

Electrophysiological studies using the Xenopus oocyte expression system. Preparation of oocytes, cRNA injection and electrophysiological measurements were as described (4, 6). Cloned rat GABAB receptor cRNAs, as well as the human m2-muscarinic receptor cRNA, were coinjected with cRNAs for rat Kir3.1 and mouse Kir3.2, cloned G protein-gated $\rm K^+$ channel subunits, into Xenopus oocytes. Rat Kir3.1 and mouse Kir3.2 cDNAs were kindly provided by Dr. H. A. Lester (Caltech, CA), and human m2-receptor cDNA by Dr. E. G. Peralta (Harvard Univ.). Electrophysiological studies were done 3-7 days after the cRNA injection. To induce the $\rm K^+$ currents, either baclofen, a GABAB receptor agonist, or acetylcholine, a m2-receptor agonist, were used.

Cell culture and Radioligand binding assays. CHO cells and HEK-293 cells (ATCC: CRL 1573) were maintained under standard culturing conditions for these cell lines. Cells were transfected with pCR3 vector (Invitrogen, San Diego, CA) ligated each of GABA_BR1b, GABA_BR1c and GABA_BR1d in the sense orientation. Cells were transfected with these plasmids by the Lipofectin method (Life Technologies, Gaithersburg, MD) and stable cell lines were established by G418 (geneticin) selection (500 $\mu g \text{ ml}^{-1}$ for CHO, 800 $\mu g \text{ ml}^{-1}$ for HEK293). The cell lines were subsequently grown in the presence of G418 (500 µg ml⁻¹). The transfected CHO cells were cultured to semiconfluence in 10-cm dishes, and were then passed into 24-well culture plate. After two days, the cells were washed twice with Krebs'-Tris buffer (20 mM Tris-HCl pH 7.4, 118 mM NaCl, 5.6 mM glucose, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 4.7 mM KCl, 1.8 mM CaCl₂ pH 7.4), and incubated for 90 min with ³H-baclofen (20 nM and 50 nM) (New England Nuclear, Boston, MA) in room temperature in the presence or absence of (\pm)-baclofen (100 μ M) (Sigma, St. Louis, MO). The cells were then cooled on ice and washed twice with ice-cold Krebs'-Tris buffer, and then solubilized with 1% SDS. Subsequently radioactivity was measured by liquid scintillation counting (7). Cell membranes of the transfected HEK293 cells were prepared according to the protocol described in Morrow et al. (8). Membranes were suspended in Krebs'-Tris buffer (50 mM Tris-HCl, 2.5 mM CaCl₂, pH 7.4) and incubated with 20 nM ³H-baclofen for 30 min at room temperature in the presence or absence of (\pm) -baclofen (100 μ M). The incubation was terminated by filtration through GF/B Whatman glass fiber filters, and radioactivity was measured by liquid scintillation counting. The specific activity of ³H-baclofen was $31.5 \text{ Ci mmol}^{-1}$.

 $\it RT\text{-}PCR$ assay for $\it GABA_B$ receptors. The cDNAs synthesized from total RNAs extracted from various rat organs with oligo-(dT) primers were used as templates for PCR amplification. Primers for the amplification of the $\it GABA_BR1$ isoforms were as follows: $\it GABA_BR1c$, 5'-AGTGGAGGAAGACCCTAGAG-3' (forward), and 5'-

ATCATGGTCACAGGAGCAGT-3' (reverse), corresponding to nucleotide positions 1747–1766 and 2216–2197 of the GABA_BR1c cDNA sequence; GABA_BR1d, 5'-TGAAACGCAGGACACCATGA-3' (forward), and 5'-TCACTTGTAAAGCAAATGTACT-3' (reverse), corresponding to nucleotide positions 2253–2272 and 3102–3081 of the GABA_BR1d cDNA sequence. The PCR condition was as follows: an initial denaturation at 94°C for 4 min, followed by 30 cycles of denaturation at 94°C for 45 s, annealing at 55°C for 1 min, and extension at 72°C for 2 min, with a final extension step at 72°C for 8 min. Amplified DNA fragments for GABA_BR1c and -d were electrophoretically fractionated on 2 and 0.8% agarose gels, respectively. The RT-PCR products from rat cerebellum and kidney were subcloned into pCR2.1 vector, and were sequenced as described above to confirm the sequences of GABA_BR1 isoforms.

RESULTS

We obtained 71 positive clones after screening approximately 6 x 10^5 plaques of the rat cerebellum cDNA library. A full-length GABA_BR1b cDNA encoding 844 amino acids was obtained by restriction enzyme digestion and religation of two overlapping clones. The nucleotide at position 2457 of this clone was A, while that of rat GABA_BR1b reported by Kaupmann *et al.* (4) was G. This substitution did not alter the deduced amino acid sequence, and might be due to polymorphism in rat GABA_BR1 gene.

Two of positive clones obtained, named RGB33 and RGB69, were sequenced. The nucleotide sequence of RGB33 revealed a single open reading frame encoding a protein of 875 amino acid residues. RGB33 had a sequence identical to GABA_RR1b, and possessed an additional 93-bp insertion between nucleotide positions 1961 and 1962 of GABA_BR1b. The insertion of 93 bp generated an additional 31-amino-acid sequence between Gly^{654} and Ile^{655} in $GABA_BR1b$. Thus, RGB33 may have a structural variation in the fifth transmembrane region and the second extracellular loop (Fig. 1). RGB69, that also had a sequence identical to GABARIb, lacked 5'-untranslated region and 1438 bp of coding region in the N-terminus of GABA_RR1b and had an additional 566-bp insertion in the C-terminus between nucleotide positions 2361 and 2362 of GABA_RR1b. RT-PCR with a specific primer for GABA_BR1b and that for RGB69 using the cDNAs synthesized from total RNAs extracted from rat cerebellum as a template yielded transcripts for RGB69, while RT-PCR with specific primers for GABA_RR1a and RGB69 could not yield them (data not shown). Therefore, a full-length cDNA for RGB69 was obtained by combining with the 5'-end of GABA_BR1b, and encoded a protein of 812 amino acids. Insertion of the 566 bp generated divergent amino acid sequences in the C-termini between RGB69 and GABA_RR1b. Thus, RGB69 had an amino acid sequence identical to GABA_BR1b through Glu⁷⁸⁷ and then diverged in the C-terminal ends (Fig. 2). These findings indicated that RGB33, RGB69 and GABA_BR1a/-b may be formed by alternative splicing

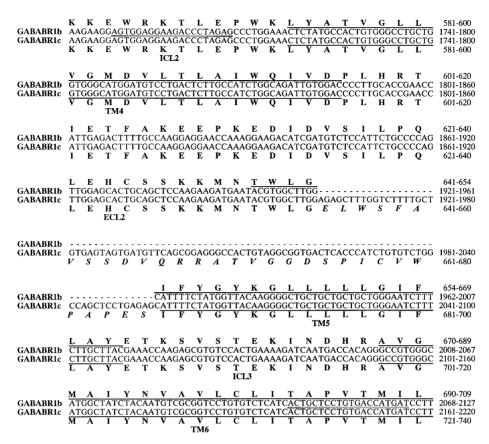


FIG. 1. Aligned nucleotide and deduced amino acid sequences in the transmembrane region of rat $GABA_BR1b$ and $GABA_BR1c$. The nucleotides and amino acids of $GABA_BR1b$ and -c are numbered to the right of each sequence. The putative transmembrane domains (TM4-6), that are lined, intracellular loops (ICL2 and -3) and an extracellular loop (ECL2) are indicated. $GABA_BR1c$ has an additional 93-bp insertion that generated an additional 31-amino-acid sequence. Additional amino acids are indicated in italic. Nucleotide sequences of sense and antisense primers for RT-PCR to determine tissue distributions of $GABA_BR1b$ and -c mRNAs are indicated by the double bars.

of a single rat $GABA_BR1$ gene. None of $GABA_BR1$ isoforms reported to date contained the additional segments of RGB33 and RGB69. Based on these results, we designated RGB33 and RGB69 as $GABA_BR1c$ and $GABA_BR1d$, respectively.

For functional expression of GABA_BR1 isoforms, the *Xenopus* oocyte expression system and mammalian cells were used. When m2-receptor cRNA was coinjected with Kir3.1 and Kir3.2 cRNAs into *Xenopus* oocytes, acetylcholine-induction of the inwardly rectifying K⁺ current was enhanced dramatically, as noted in previous studies (6, 9). In contrast, baclofen up to 400 μ M induced no significant current alterations in the oocytes where any one of cRNAs for GABA_BR1b, -c, and -d was coinjected with Kir3.1 and Kir3.2 cRNAs (data not shown). We could not detect a specific binding for ³H-baclofen in either CHO or HEK293 cells transfected these GABA_BR1 clones (data not shown).

Northern blot analysis hybridized with a probe containing sequences common to all of rat $GABA_BR1$ isoforms revealed that their mRNAs were expressed at high levels in brain and at low levels in testis, but

not in tissues from heart, spleen, lung, liver, skeletal muscle and kidney (5). To determine the distribution of mRNAs for GABABR1c and -d in various rat tissues, RT-PCR analysis was done. Specific primers for amplification of GABA_BR1c yielded transcripts of 470 bp for GABA_BR1c and those of 377 bp for isoforms without 93-bp insertion of GABA_RR1c. In tissues where mRNAs for both GABA_RR1c and any one of other isoforms are expressed, transcripts of 470 bp and 377 bp can be detected. The RT-PCR yielded two visible amplified products of 470 and 377 bp in all rat tissues examined: forebrain, cerebellum, eye, atrium, ventricle, lung, stomach, small intestine, colon, liver, spleen, kidney, urinary bladder and skeletal muscle (Fig. 3A). Thus, GABA_BR1c mRNA is ubiquitously expressed in various rat tissues. Specific primers for amplification of GABA_BR1d yielded transcripts of 850 bp for GABA_RR1d and those of 284 bp for isoforms without 566-bp insertion of GABA_BR1d. GABA_BR1d mRNA was expressed in forebrain, cerebellum, eye, kidney and urinary bladder, while the transcript of 284 bp was detected in all tissues examined (Fig. 3B).

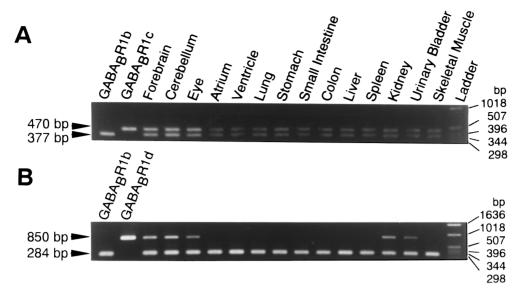

GABABR1b GABABR1d		GGCT GGCT	GAT GAT	CACC	CCGA	AGGC AGGC	GA/	ATG ATG	GČA GCA	GTC GTC	TGA TGA	AAC AAC	GČA GCA	GGA GGA	CAC	CAT CAT	GAA GAA	AAC.	AGGA AGGA	
GABABR1b GABABR1d		CCĀC CCAC	CAA	CAA(CAAC	CGAC	GA/	AGA AGA	GAA GAA	GTC GTC	CCG	ACT ACT	GTT GTT	GGA GGA	GAA	GGA GGA	AAA AAA	CCG.	AGAA AGAA	
GABABR1b GABABR1d		4AAA 4AAA	GAT GAT	CAT(CGCT CGCT	GAC GAC	GT	GTG	CGG	TGA	CAA	ACA.	ACC	GGG	GCC	CCC	CGT	GTC'	TGAG	
	GGTGG G G	GGTT L	GCC(P	CGTA V	AGTC V	6 G	GCC P	TTC S	GAT I	AGA E	GGT V	TTG.	AGT	GTT	GGT	GGT	TCA	CAG.	AGGG	2401-2460 801-812
GABABR1b GABABR1d																				2461-2520
GABABR1b GABABR1d	CCCG	AGGA	GAG	GGAG	GGGC	GGT	TC	TGC	AGA	CTT	CAG	CCC	ACC	TGA	GGC	AAA	AGA	GCA	GTCA	2521-2580
GABABR1b GABABR1d																				2581-2640
GABABR1b GABABR1d																				2641-2700
GABABR1b GABABR1d																				2701-2760
GABABR1b GABABR1d																				2761-2820
GABABR1b GABABR1d	TAAT	гтсс	TTT	CTCA	ACTO	CGTA	 ACA'	TCT	CGT	ттс	ATC	GTC	TCC	ccc	ccc	стс	ССТ	CCT	TCCA	2821-2880
GABABR1b GABABR1d	TTCC	ACAT	CGC	CCT	ссто	CCCA	 ACA	CTC	ccc	ATT	GTG	TTT	CTT	CCT	CCA	- AA	\overline{AGA}	E GGA GGA	GCGC	788-791 2362-2373 2881-2940
GABABR1b GABABR1d	GTCT	CTGA	ACT	GCGG	CCAT	Γ CAC	CT	CCA	GTC	TCG	GCA	GCA	ACT	CCG	CTC	ACG	GCG	CCA		2374-2433
GABABR1b GABABR1d		CACC	CCC	AGA:		CTCT	rgg	GGG	CCT	TCC	CAG	GGG	ACC	CTC	TGA	GCC	CCC	TGA	CCGG	
GABABR1b GABABR1d	CTTA		TGA	TGG	GAG1	CGA	AGT.	ACA	TTT	GCT	'TTA	CAA	GŢG							

FIG. 2. Aligned nucleotide and deduced amino acid sequences in the transmembrane region of rat $GABA_BR1b$ and $GABA_BR1d$. The nucleotides and amino acids of $GABA_BR1b$ and -d are numbered to the right of each sequence. Asterisk indicates the terminal codon. $GABA_BR1d$ has an additional 566-bp insertion and diverged amino acids, indicated in italic. Nucleotide sequences of sense and antisense primers for RT-PCR to determine tissue distributions of $GABA_BR1b$ and -d mRNAs are indicated by the double bars.

DISCUSSION

We obtained evidence that GABA_BR1c and -d have an additional splice in the transmembrane and 3'translated regions of GABA_RR1b, respectively, while GABA_BR1a differed from GABA_BR1b in the 5'translated nucleotide and amino acid sequences (5). Alternatively spliced variants have also been identified in G protein-coupled receptors such as glutamate, dopamine, β_1 -adrenergic, and μ opioid receptors, and are implicated in altered receptor functions, including response to agonists, ligand binding and G protein coupling (10). For example, mGluR1a, a member of the metabotropic glutamate receptor gene family, generates faster responses in Xenopus oocytes (11), and is slightly activated even in the absence of an agonist in certain cell lines (12), compared with its splice variants lacking the long C-terminal domain. Thus, the divergent amino acid sequences resulted from use of the alternate exon or insertion of additional exons of $GABA_BR1$ isoforms might arise any functional differences. Kaupmann $et\ al.$ (5) found $GABA_BR1a$ and -b to be pharmacologically identical and to have similar ligand-binding affinities. Biological functions of the $GABA_BR1$ isoforms remain to be determined.

When Kir3.0 channels are coexpressed in *Xenopus* oocytes with a G protein-coupled receptor, such as m2-muscarinic (6, 13), serotonin 1A (14) and δ -opioid receptors (15), each agonist for these receptors activated K⁺ currents. We have reported that, in oocytes coinjected with the rat cerebellar poly(A)⁺ RNA and cRNAs for Kir3.1 and Kir3.2, K⁺ currents were elicited by GABA_B receptor agonists such as baclofen and 3-aminopropylphosphinic acid, and that the baclofeninduced currents were inhibited by selective GABA_B receptor antagonists such as 2-OH saclofen and CGP 35348 (4). These findings indicate that GABA_B recep

FIG. 3. RT-PCR detection of mRNAs for rat $GABA_BR1$ isoforms. (A) The specific primers for amplification of $GABA_BR1$ c yielded transcripts of 470 bp for $GABA_BR1$ c and those of 377 bp for isoforms not containing the 93-bp insertion of $GABA_BR1$ c. $GABA_BR1$ b and -c cDNAs were used as controls. The RT-PCR yielded two amplified products of 470 bp and 377 bp in all tissues examined. (B) The specific primers for amplification of $GABA_BR1$ d yielded transcripts of 850 bp for $GABA_BR1$ d and those of 284 bp for isoforms not containing the 566-bp insertion of $GABA_BR1$ d. $GABA_BR1$ b and -d cDNAs were used as controls. The RT-PCR products of 850 bp were detected in forebrain, cerebellum, eye, kidney and urinary bladder, and those of 284 bp in all tissues examined.

tors in rat cerebellum are functionally expressed in oocytes, and activate the Kir3.0 channels. Thus, for functional expression of cloned GABA_R receptors, the *Xenopus* oocyte expression system could be used. Although it was demonstrated that GABA_BR1a and -b negatively couple to adenylyl cyclase, as described for native GABA_B receptors when expressed in HEK293 cells (5), we found that baclofen did not induce any significant current alterations in oocytes where any one of GABA_BR1b, -c and -d was coexpressed with Kir3.1 and Kir3.2. These results suggest the possible existence of other classes for the GABAR receptor which can activate K⁺ channels. Another possibility would be that accessory proteins may be needed to function as the receptor in *Xenopus* oocytes. A family of proteins that modify the activity of a member of G protein-coupled receptors has been identified and was shown to be expressed endogenously in certain cell lines, including HEK293T cells (16). Therefore, GABA_RR1 isoforms may require an accessory protein, which may possibly be expressed endogenously in HEK293 cells but not in oocytes, to functionally reconstitute the GABA_B receptors. In our present study, we could not detect a specific binding for ³H-baclofen in CHO or HEK293 cells transfected GABA_RR1 isoforms clones. The difference in a radioligand might explain the discrepancy between the previous results (5) and our present results. Although Kaupmann et al. (5) detected recombinant GABA_RR1 isoforms in COS cells and HEK293 cells using relatively high-affinity radioligands, very recently Couve et al. (17) reported that recombinant $GABA_BR1a$ receptors fail to reach the cell surface and are retained in the endoplasmic reticulum when introduced into COS cells and HEK293 cells.

RT-PCR analysis showed that mRNAs for GABA_RR1 isoforms are expressed in various tissues, while Northern blot analysis revealed this expression only in brain and testis. Thus, GABA_BR1 isoforms are expressed at low levels in the organs other than brain and testis. Ubiquitous expression at low levels of the GABA_BR1 isoforms, including GABA_BR1c, suggests that the receptors may be expressed in subsets of cells which distribute widely in various tissues, e.g., vascular smooth muscle, endothelial and peripheral nerve cells, rather than in parenchymal organs. Actually, GABA_B receptors were demonstrated in peripheral autonomic nerve terminals (18), where they mediate a decrease in evoked neurotransmitter release, resulting in inhibition of gastric motility, relaxation of urinary bladder and bronchus, reduction in vascular tone, stimulation of insulin, growth hormone and glucagon release, and hyperpolarization of sympathetic ganglia. On the other hand, GABA_BR1d was expressed in limited tissues, indicating that distribution of this isoform differs from that of other GABA_RR1 isoforms. Distribution of each isoform of GABA_RR1 in various tissues can be determined by *in situ* hybridization using the probes specific for each isoform, plus immunohistochemical techniques. Cloning of the GABA_B receptors expressed in various tissues should prove to be an effective approach to elucidate molecular mechanisms of these receptors in peripheral organs.

ACKNOWLEDGMENTS

This work was supported by grants from the Ministry of Education, Science, Sports, and Culture of Japan and The Ueda Memorial Trust Fund for Research of Heart Diseases. The ${\rm GABA_BR1c}$ and -d cDNA sequences have been submitted to the DDBJ/EMBL/GenBank nucleotide sequence databases with Accession Nos. AB016160 and AB016161, respectively.

REFERENCES

- Burt, D. B., and Kamatchi, G. L. (1991) FASEB J. 5, 2916– 2923
- Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) Nature 283, 92–94.
- Bowery, N. G. (1990) Annu. Rev. Pharmacol. Toxicol. 33, 109– 147.
- Uezono, Y., Akihara, M., Kaibara, M., Kawano, C., Shibuya, I., Yanagihara, N., Toyohira, Y., Yamashita, H., Taniyama, K., and Izumi, F. (1998) *Neuroreport* 9, 583–587.
- Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B. (1997) Nature 386, 239–246.
- Isomoto, S., Kondo, C., Takahashi, N., Matsumoto, S., Yamada, M., Takumi, T., Horio, Y., and Kurachi, Y. (1996) Biochem. Biophys. Res. Commun. 218, 286–291.

- Chazenbalk, G. D., Nagayama, Y., Kaufman, K. D., and Rapoport, B. (1990) Endocrinology 127, 1240-1244.
- 8. Morrow, B. A., Lee, E. J. K., Taylor, J. R., Elsworth, J. D., Nye, H. E., and Roth, R. H. (1997) *JPET* **283**, 712–721.
- Kofuji, P., Davidson, N., and Lester, H. A. (1995) Proc. Natl. Acad. Sci. USA 92, 6542–6546.
- Gudermann, T., Kalkbrenner, F., and Schultz, G. (1996) Annu. Rev. Pharmacol. Toxicol. 36, 429–459.
- Pin, J. P., Waeber, C., Prezeau, L., Bockaert, J., and Heinemann,
 S. F. (1992) Proc. Natl. Acad. Sci. USA 89, 10331–10335.
- 12. Prézeau, L., Gomeza, J., Ahern, S., Mary, S., Galvez, T., Bockaert, J., and Pin, J. P. (1996) *Mol. Pharmacol.* **49**, 422–429.
- 13. Krapivinski, G., Gordon, E. A., Wickman, K., Velimirovic, B., Krapivinski, L., and Clapham, D. E. (1995) *Nature* **374**, 135–141.
- Spauschus, A., Lentes, K.-U., Wischmeyer, E., Dißmann, E., Karschin, C., and Karschin, A. (1996) J. Neurosci. 16, 930-938.
- Lesage, F., Duprat, F., Fink, M., Guillemare, E., Coppola, T., Lazdunski, M., and Hugnot, J.-P. (1994) FEBS Lett. 353, 37–42.
- McLatchie, L. M., Fraser, N. J., Main, M. J., Wise, A., Brown, J., Thompson, N., Solari, R., Lee, M. G., and Foord, S. M. (1998) Nature 393, 333–339.
- Couve, A., Filippov, A. K., Connolly, C. N., Bettler, B., Brown, D. A., and Moss, S. J. (1998) J. Biol. Chem. 273, 26361–26367.
- Bowery, N. G., Dobel, A., Hill, D. R., Hudson, A. L., Shaw, J. S., Turnbull, M. J., and Warrington, R. (1981) *Eur. J. Pharmacol.* 71, 53–70.